On a Poisson-Lie analogue of the classical dynamical Yang-Baxter equation for self-dual Lie algebras
نویسنده
چکیده
We derive a generalization of the classical dynamical Yang-Baxter equation (CDYBE) on a self-dual Lie algebra G by replacing the cotangent bundle T G in a geometric interpretation of this equation by its Poisson-Lie (PL) analogue associated with a factorizable constant r-matrix on G. The resulting PL-CDYBE, with variables in the Lie group G equipped with the Semenov-Tian-Shansky Poisson bracket based on the constant r-matrix, coincides with an equation that appeared in an earlier study of PL symmetries in the WZNW model. In addition to its new group theoretic interpretation, we present a self-contained analysis of those solutions of the PL-CDYBE that were found in the WZNW context and characterize them by means of a uniqueness result under a certain analyticity assumption.
منابع مشابه
1 8 M ay 2 00 0 Lectures on the dynamical Yang - Baxter equations
This paper arose from a minicourse given by the first author at MIT in the Spring of 1999, when the second author extended and improved his lecture notes of this minicourse. It contains a systematic and elementary introduction to a new area of the theory of quantum groups – the theory of the classical and quantum dynamical Yang-Baxter equations. The quantum dynamical Yang-Baxter equation is a g...
متن کاملLeft-symmetric Bialgebras and An Analogue of the Classical Yang-Baxter Equation
We introduce a notion of left-symmetric bialgebra which is an analogue of the notion of Lie bialgebra. We prove that a left-symmetric bialgebra is equivalent to a symplectic Lie algebra with a decomposition into a direct sum of the underlying vector spaces of two Lagrangian subalgebras. The latter is called a parakähler Lie algebra or a phase space of a Lie algebra in mathematical physics. We i...
متن کاملPoisson-Lie dynamical r-matrices from Dirac reduction
The Dirac reduction technique used previously to obtain solutions of the classical dynamical Yang-Baxter equation on the dual of a Lie algebra is extended to the PoissonLie case and is shown to yield naturally certain dynamical r-matrices on the duals of Poisson-Lie groups found by Etingof, Enriquez and Marshall in math.QA/0403283. Postal address: MTA KFKI RMKI, H-1525 Budapest 114, P.O.B. 49, ...
متن کاملar X iv : m at h / 99 08 06 4 v 1 [ m at h . Q A ] 1 3 A ug 1 99 9 Lectures on the dynamical Yang - Baxter equations
This paper arose from a minicourse given by the first author at MIT in the Spring of 1999, when the second author extended and improved his lecture notes of this minicourse. It contains a systematic and elementary introduction to a new area of the theory of quantum groups – the theory of the classical and quantum dynamical Yang-Baxter equations. The quantum dynamical Yang-Baxter equation is a g...
متن کاملThe Chiral WZNW Phase Space and its Poisson-Lie Groupoid
The precise relationship between the arbitrary monodromy dependent 2-form appearing in the chiral WZNW symplectic form and the ‘exchange r-matrix’ that governs the corresponding Poisson brackets is established. Generalizing earlier results related to diagonal monodromy, the exchange r-matrices are shown to satisfy a new dynamical generalization of the classical modified Yang-Baxter equation, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008